
2022-2-(7): Manuscript for presentation at IPSJ-SIGPRO, 28 7 2022.

Design and Implementation of a Parallel-native
Programming Language

Ken Shibata1,a) Shinya Takamaeda2,b)

Abstract: Although multi-core CPUs have become mainstream in recent years, many of the current mainstream lan-
guages were designed when single-core CPUs were the mainstream, and often require special libraries and syntax to
improve execution speed through parallel execution, making parallel execution not easy to achieve. We developed a
parallel-oriented programming language, named Coa, which makes parallel execution the default. To avoid data races,
it automatically detects variable dependencies and executes programs in parallel, just as out-of-order execution of
CPUs detects dependencies among data. Therefore, although parallel execution is performed internally, the behavior
seen from the outside is the same as sequential execution, and execution speed can be improved without increasing the
complexity of the program. It also has a function that enables sequential execution, in case the processing unit is small
and the overhead of sequential execution is large. The interpreter itself is written in Go, and source code written in
Coa is executed in parallel in the interpreter using goroutine. Currently, the language can be used to implement basic
programs. As a comparison, two experiments, downloading 13 files and computing to display the Mandelbrot set were
executed in sequential and parallel processing. The execution time, number of lines of code, and result for each were
compared, and it was confirmed that Coa can improve processing speed through parallel execution without increasing
the complexity of the code and having consistent results.

Keywords: Parallel, Programming Language

1. Introduction
Due to recent advances in semiconductor technology, multi-

core computers are becoming mainstream. While multi-core
computers are becoming mainstream, the processing speed of in-
dividual cores has not improved much in recent years. Therefore,
in order to improve the operating speed of programs, it is neces-
sary to take advantage of multi-cores by executing programs in
parallel.

Fig. 1 shows the number of cores in Apple workstations, desk-
tops, and smartphones. It shows that multicores began to be used
in the mid-2000s, and that multicores have become mainstream
by 2020. The black triangles in Fig. 1 show the release years of
major programming languages. Comparing this with the transi-
tion in the number of cores, we can see that all major program-
ming languages except Go were designed in the single-core era.

Thus, traditional programming languages such as C and Java
were designed in an era when single cores were the norm. In
order to perform parallel processing we need to write programs
tailored for parallel processing. In addition, bugs caused by race
conditions of variables are often hard to reproduce, and debug-
ging can also be difficult.

A comparison between programming languages focusing on
the parallel execution capability of programs is shown in Fig. 2.
In Java, threads are usually used for parallel execution; this re-

1 William Lyon Mackenzie Collegiate Institute, Toronto, Ontario, Canada
2 Department of Computer Science, Graduate School of Information Sci-

ence and Technology, The University of Tokyo, Hongo, Bunkyo-ku,
Tokyo, 113–0033, Japan

a) kenxshibata@gmail.com
b) shinya@is.s.u-tokyo.ac.jp

quires additional code to create and manage threads. In addition,
code such as locking variables to prevent data races is also re-
quired. Therefore, code for sequential execution and code for par-
allel execution are generally very different. Python, JavaScript,
Ruby, etc. can use threads, and in some cases, features such
as asynchronous execution are available. In addition, Go [1]
and Elixir [2] uses models similar to CSP [3] or actor models,
which make parallel execution easier. However, as with Java, se-
quential execution and parallel execution require different code in
Go, Elixir, and OpenMP [4]. PaSh [5] performs parallel execu-
tion without special description by performing runtime analysis.
However, since PaSh is a shell script and parallel execution is
done on a per-execution-process basis, it does not have sufficient
functionality to describe general programs.

To overcome these drawbacks, this paper proposes a paral-
lel execution method that automatically resolves data dependen-
cies and produces the same results as sequential execution, even
though parallel execution is used. We implement this in the Coa
programming language and evaluated it using several example
programs. The Coa language performs parallel execution by de-
fault; since problems such as race condition between variables
can occur without modification, we detect race condition between
variables using the same mechanism as for out-of-order execution
on a CPU. If a conflict between variables occurs, sequential exe-
cution is automatically performed, and if not, parallel execution
is automatically performed. Therefore, parallel execution can be
performed without changing the program description for sequen-
tial execution and parallel execution, and the advantages of multi-
core can be utilized.

This paper describes the proposed programming language Coa

1

2022-2-(7): Manuscript for presentation at IPSJ-SIGPRO, 28 7 2022.

in detail. Section 2 provides an overview of the Coa language, its
syntax, and an algorithm for detecting variable conflicts. Section
3 describes the implementation of the Coa interpreter using the
Go language. Section 4 compares, examines, and discusses the
results of executing two different tasks using the Coa language.
Finally, a summary and issues are discussed.

Fig. 1 Number of cores vs. year.

Fig. 2 Comparison table.

2. Programming Language Coa
2.1 Coa Language Overview

We designed the Coa language and Coa interpreter to test the
usefulness and scope of a language model that automatically
analyses dependencies between variables and automatically de-
termines sequential and parallel execution based on the analysis.
Following are the summary of the features of the Coa:
• Has a Lisp-like syntax based on S-expressions
• Defaults to parallel execution (executes the top-level com-

pound statement in a block in parallel)
• Has dependency analysis between variables is performed at

runtime to prevent data races
• Automatically performs parallel or sequential execution so

that the result is the same as if it were processed sequen-
tially.

More details about each of these are described below.

2.2 Coa Language Syntax
Similar to Scheme and Common Lisp, the Coa language em-

ploys S-expressions as its syntax. Basic language features such as

arithmetic, assignment, conditional branching, repetition, func-
tion definitions, array, and block definitions (anonymous func-
tions) are implemented. The following is a code example in con-
trast to the C language.

Assignment

C: int i = 10;

Coa: (@def i 10)

Arithmetic

C: int a = b + c;

Coa: (@def a (@add b c))

Conditional Branching

C: if (a == 0) a() else b()

Coa: (@if (@eq a 0) (a) (b))

Looping

C: for (int i = 0; i < 10; i++) {}

Coa: (@for (@def i 0) (@lt i 10) ())

Function Definition

C:

int div2(x int) {

return x/2;

}

Coa:

(@def div2 {(@def x $0)

(@div x 2)

})

Array Definitions and Accesses

C:

int numbers[] = {1, 2, 3, 4, 5}

for (int i = 0; i < 5; i ++) {

int number = numbers[i];

div2(number);

}

Coa:

(@def numbers [1, 2, 3, 4, 5])

(@map numbers {(@def number $1)

(div2 number)

})

Input / Output

C: printf("Hello world: %d", x)

Coa: (@io_outln "Hello world: $x")

In addition, similarly to other languages in the Lisp family
such as Scheme, there are higher-level functions such as @map
and @foldr.

As an example of a more complex Coa program, the following
is an example of a FizzBuzz program. For every number from 0
to 100, it outputs ”Fizz” for a multiple of 3, ”Buzz” for a multiple
of 5, ”Fizz Buzz” for both multiples (multiples of 15), and the
number if it is neither.

2

2022-2-(7): Manuscript for presentation at IPSJ-SIGPRO, 28 7 2022.

(@io_outln (@foldr @add

(@for (@def i 0) (@lt i 101) (@mod i (@add i 1)) {

(@def line (@add

(@if (@eq (@rem i 3) 0) "Fizz" "")

(@if (@eq (@rem i 5) 0) "Buzz" "")

))

(@add (@if (@eq line "") (@string i) line) "\n")

})

))

Appendix A.1 lists the built-in operators. Appendix A.2 shows
some sample code in the Coa language.

2.3 Parallel Execution by Default
In Coa, the block definition operator { } is used to execute com-

pound statements equivalent to lambda and begin in Scheme and
other languages as shown in Fig. 3. Top-level expressions defined
in blocks are executed in parallel by default.
{

(func1)

(func2)

}

In this example, func1 and func2 has no dependencies or side
effects, so func2 is executed without waiting for func1 to finish.

However, if the overhead of parallel execution is large, such as
when the execution unit is small, sequential execution can also be
performed using the sequential execution block operator {% } as
shown below.
{%

(func1)

(func2)

}

In this example, func2 is executed after func1 is executed,
just as in a normal language. By adopting an execution model
that defaults to this kind of parallel execution, it is possible to
perform parallel execution that takes advantage of multiple cores
with only minor changes to the source code. However, as one
can easily imagine, if there are dependencies between variables,
the execution results may differ depending on the order of execu-
tion. This problem and its solution in the Coa language will be
explained in the next section.

2.4 Data Races
This section describes the automatic parallel execution feature,

which is a feature of the Coa language. The Coa language per-
forms parallel execution by default, However, simply executing
all compound statements in parallel causes a problem in which
the execution result could differ from that of sequential execu-
tion, depending on the order of execution. For example:
{

(@def x 1)

(@def y (@add x 1))

}

When the above code is executed, the value of variable y after
execution is 2 in sequential execution. However, if the code is

Fig. 3 Parallel execution and serial execution.

simply executed in parallel, the value of variable y after execu-
tion is 2, depending on the order of execution. or an undefined
reference error to x occurs.

To prevent errors due to such data races, Coa analyzes the de-
pendencies between data at runtime and controls the order of exe-
cution. In this example, x is updated in line 2, and the calculation
dependent on x is performed in line 3. Therefore, line 3 is evalu-
ated after line 2 has finished evaluating.

In Fig. 4, since (func3 var1 va2) (line 2) uses var1 and
var2, this would be run in the following order: func1, func2,
and func3. func4 would be run in parallel as it is independent.

Fig. 4 Parallel execution example.

The Coa language performs dependency analysis between data
at runtime. In order to prevent possible analysis omissions, re-
strictions have been introduced into the language. One such re-
striction is the elimination of pointers. Pointers allow data to be
referenced implicitly, making dependency analysis difficult. For
the same reason, arrays are immutable. Coa also tracks whether
the functions are pure or having side effects. When an expres-
sion includes a function having side effects, the expression are
executed in series.

3. Coa Interpreter
3.1 Interpreter Overview

The Coa language interpreter was implemented in the Go lan-
guage. The implementation of the Coa interpreter is almost the
same as that of a general AST-traversing interpreter except for

3

2022-2-(7): Manuscript for presentation at IPSJ-SIGPRO, 28 7 2022.

how the AST is executed as shown in Fig. 5. At runtime, the
source code is converted to an AST by the lexer and parser. The
interpreter executes the program following the AST. Within the
interpreter, the following additional three steps: ”data depen-
dency detection”, ”instruction assignment” and ”parallel execu-
tion” are added in Coa, and those are explained in details in the
following sections.

The Go language implements a parallel execution mechanism
called goroutine, and the goroutine is used for Coa’s parallel exe-
cution. In implementing the interpreter, the lexer and parser used
Participle [6]. The entire source code is approximately 3000 lines
and is available at *1.

Fig. 5 Coa interpreter.

3.2 Dependency Detection
The dependency detection procedure is explained using the fol-

lowing Coa code as an example:
({

(@def a 1)

(@mod a (@add a 1))

(@def b 3)

(func1 a)

(func2 b)

})

To create a dependency graph, the AST is traversed and the fol-
lowing is performed. First, it gets the uses of all variables that are
not builtin and not from an outer scope as they always defined,
and cannot be re-defined. In the example, line 3 and 5 uses a,
and line 6 uses b. Second, the interpreter gets where variables
are defined by finding calls to @def and @mod. In the example,
line 2 defines, line 3 re-defines a, and line 4 defines b. Third, the
interpreter maps variables to the latest definition. In the example,
The use of a in line 3 is mapped to line 2, while the use in line 5 is
mapped to line 3 as that is the latest definition. Similarly, the use
of b in line 6 is mapped to line 4. The result is shown in Fig. 6.
By following the above procedure, the dependency graph is cre-
ated, and the generated graph is provided to the next instruction
assignment step.

3.3 Instruction Assignment and Parallel Execution
Within the interpreter, there are the following goroutines. The

main goroutine first performs data dependency analysis. Next, the

*1 https://gitlab.com/coalang/go-coa/-/archive/bland/go-coa-bland.tar.gz

Fig. 6 Dependency graph generation and AST coloring.

AST is separated according to the results of the data dependency
analysis and placed in multiple execution ”slots”. Each slot has a
list of AST nodes to evaluate, and a list of other slots on which it
depends on.

The example in section 3.2 will be used to explain the proce-
dure. The resulting slots are shown in Fig. 7. Since line 3 uses
a (defined in line 2), it will be evaluated after line 2. In addi-
tion, line 5 uses a but it will be evaluated after line 3, as line 2
re-defines a. Lines 2, 3, and 5 can be executed sequentially, and
form one slot. Similarly, and since line 6 uses b (defined in line
4), it will be evaluated after line 4. Therefore, lines 4 and 6 form
another slot. However, since lines 2, 3, and 5 and lines 4 and
6 are completely independent, they can be executed in parallel.
Therefore, each slot has no dependencies.

The main goroutine creates a sub-goroutine for each slot which
does not have any dependencies and initiates parallel execution.
Each sub-goroutine may also create other sub-goroutines to exe-
cute slots that depend on itself. For example, if slot C depends
on both slot A and B, when slot A and B finish evaluation, one
of the sub-goroutines evaluating the slot may create a new sub-
goroutine to run slot C. If the sub-goroutine does not have any
other sub-goroutines to create, it will run slot C without creating
a new sub-goroutine.

Fig. 7 Instruction assignment and parallel execution by goroutine.

4. Experiment and Results
The Coa language allows parallel and sequential execution

with nearly identical code without causing data races. Further-
more, it is proposed that parallel execution can improve speed. To
confirm these two points, two sample programs were developed
in Coa, Python, and Go, and the results of the parallel and sequen-
tial programs were compared for consistency. We evaluated the
consistency of the program results, the change in the number of
program lines, and the change in execution time between parallel
and sequential programs.

4

2022-2-(7): Manuscript for presentation at IPSJ-SIGPRO, 28 7 2022.

4.1 File Downloads
We evaluated a program that performs multiple file downloads.

The downloading of multiple files can be done independently,
making it suitable for parallel processing. In addition, since file
downloads are limited by the bandwidth of the network, the We
used this to compare the parallelism of interpreted and compiled
languages in the same way. Programs with similar behavior were
implemented in Coa, Go, and Python, and were run in parallel.
We compared whether the same results could be obtained by se-
quential execution and parallel execution, the change in the num-
ber of lines of code, and the change in the execution time. As an
experiment, we downloaded 10 to 15 files of several 10 MB to
several GB in size at the same time, mainly from Wikipedia, and
measured the time until completion. The execution environment
used was an Intel Core i5 CPU with 4 cores and 8 threads running
Linux.

We implemented the code for sequential and parallel execution
using Coa, Go, and Python, respectively. First, we executed the
programs and confirmed that the same files could be downloaded
in sequential and parallel execution, and that there was no differ-
ence in the operation results. Fig. 8 shows a comparison of the
number of lines of sequential and parallel execution code in each
implementation language of the code. In Coa, sequential and par-
allel codes can be implemented with the same number of lines of
code, while in Go and Python, parallel codes can be implemented
with the same number of lines of code. Go and Python, the num-
ber of lines of parallel execution code increases by a factor of 1.2
to 1.3. This figure shows that Coa can implement sequential and
parallel execution with the same number of lines of code, and that
the goal of parallel execution without increasing the complexity
of the code has been confirmed.

It can also be confirmed that the program is more concise in
Coa than in Go and Python. Go has ”import” statements, which
increase the number of lines. Python uses indentation to write
block statements, which is thought to be less dense than Coa’s
S-expression statements.

Fig. 9 shows a comparison of execution times. It was con-
firmed that parallel execution reduced execution time by a fac-
tor of 0.78 to 0.53 compared to sequential execution for all lan-
guages. The results show that parallel execution in any language
reduces execution time from 0.78 times to 0.53 times faster than
sequential execution. Using the Coa language in this example, we
can see that At least for tasks with large granularity, such as file
downloads. parallel processing without increasing the complex-
ity of the code. execution time can be reduced without increasing
the complexity of the code.

4.2 Mandelbrot Set
The second experiment was an evaluation of a program that

computes a Mandelbrot set for a given range in the complex
plane. To find the Mandelbrot set, the following formula is calcu-
lated for a point c in a complex plane, and the number of iterations
until divergence until convergence is obtained.

zn+1 = zn + c (1)

z0 = 0 (2)

Fig. 8 File downloads code lines.

Fig. 9 File downloads execute time.

Since the computation of each point on the complex plane is inde-
pendent, the computation can proceed in parallel. This was used
as a benchmark for fine-grained parallel computation.

We were able to confirm that the calculation results are the
same for sequential and parallel processing, even though the par-
allel execution is performed by default. Fig. 10 compares the
number of lines of code between the Coa and Go implementa-
tions. While Go increases the number of lines by approximately
10%, Coa increases the number of lines by approximately the
same amount. Coa has the same number of rows, confirming that
parallel execution is achieved without increasing complexity.

Fig. 11 shows a comparison of execution times for the Coa,
Go, and Python implementations. As in the file download exper-
iment, a 4-core, 8-thread Intel Core i5 was used as the execution
environment. The parallel execution in Coa reduced the execution
time by a factor of 0.94 compared to sequential execution, and in
Go, 0.37 times faster than sequential execution. Although parallel
execution reduced execution time, 0.94 × was not sufficient con-
sidering the 4-core execution environment. A possible reason for
this is that Coa is an interpreter, and dependency analysis is per-
formed only on the main goroutine. Therefore, the dependency
analysis becomes a bottleneck in such fine-grained calculations.
The current implementation does not allow the calculation to pro-
ceed with sufficient parallelism.

5. Conclusions
We proposed a method that automatically resolves data depen-

dencies to obtain the same results as sequential execution, even
if parallel execution is used as the default execution method. We
implemented such a method as a programming language Coa and
evaluated it on several example programs. The evaluation results

5

2022-2-(7): Manuscript for presentation at IPSJ-SIGPRO, 28 7 2022.

Fig. 10 Mandelbrot set code lines.

Fig. 11 Mandelbrot set execute time.

showed that the parallel execution was almost identical to the se-
quential execution (starting a block with {% instead of {), and the
same results could be obtained. We also showed that parallel exe-
cution can speed up the execution time. However, there are some
issues to be addressed in terms of speedup through parallel ex-
ecution. The interpreter itself is slow, and the speedup was not
proportional to the number of cores due to the following reasons.

In the future, we would like to speed up the interpreter as a
whole by, for example, detecting dependencies before execution,
as explained earlier, and compiling the program into bytecode
[7] [8]. Next, we would like to increase what can be done with
Coa by making Go’s libraries available for Coa as well.

Acknowledgments This work was supported by the JST
Global Science Campus Experts in Information Science program
hosted by the National Institute in Informatics, Information Pro-
cessing Society of Japan, and the Japanese Committee for the In-
ternational Olympiad in Informatics. We appreciate the mentors
and students in the program for their useful feedback. Financial
support was provided by the Masason Foundation.

References
[1] The Go Authors, “The Go Programming Language,” Retrieved

September 19, 2021. [Online]. Available: https://golang.org
[2] The Elixir Team, “Getting started: Processes,” Retrieved

July 24, 2022. [Online]. Available: https://elixir-lang.org/getting-
started/processes.html

[3] C. A. R. Hoare, “Communicating sequential processes,” Commun.
ACM, vol. 21, no. 8, p. 666–677, aug 1978. [Online]. Available:
https://doi.org/10.1145/359576.359585

[4] L. Dagum and R. Menon, “OpenMP: an industry standard API for
shared-memory programming,” 1998.

[5] S. Handa, K. Kallas, N. Vasilakis, and M. C. Rinard, “An
order-aware dataflow model for parallel unix pipelines,” Proc. ACM
Program. Lang., vol. 5, no. ICFP, aug 2021. [Online]. Available:
https://doi.org/10.1145/3473570

[6] A. Thomas, “alecthomas/participle: A parser library for go.” [Online].
Available: https://github.com/alecthomas/participle

[7] T. Ball, “Writing a Compiler in Go.”

[8] L. Torczon and K. Cooper, Engineering A Compiler, 2nd ed. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2007.

[9] University of Waterloo, “CCC 2012 Prob-
lems, Tests and Solutions.” [Online]. Available:
https://www.cemc.uwaterloo.ca/contests/computing/2012/index.html

Appendix

A.1 Coa system commands and expressions
The following is a list of Coa language constants, built-in func-

tions, etc.

constants

@true # boolean true

@false # boolean false

time

(@time_now) # get current time

(@time_sleep time) # return after waiting time

seconds

outside system

@sys_os # name of os (e.g. windows, linux)

@sys_arch # name of CPU architecture (e.g. x86,

amd64)

@sys_args # list of arguments

(@sys_exit exit_code) # exit with exit_code

@sys_env # map of environment variables

testing

(@assert assertion name) # assert that assertion

is @true. (if not, raises an error)

filtering

(@filter list filter) # filter list using filter

(@glob pattern) # make a glob filter with pattern

(@regex pattern) # make a regex filter with

pattern

evaluation control

(@error content) # raise an error with content

(@continue) # skip the current loop

(@break) # stop the loop

(@return returned) # exit current block with

return value returned

scope

(@use name) # mark an unused variable name as

used

(@def name content) # define a variable name with

content

(@mod name content) # modify the innerest scope

variable with name name to content

loops

(@for init cond iter callable)

run init once and then callable and iter until

6

2022-2-(7): Manuscript for presentation at IPSJ-SIGPRO, 28 7 2022.

cond is @false

(@while cond callable) # run callable until cond

is @false

control

(@if [cond value]... [else])

if cond is @true, evaluate and return the value

next to

If all conds are @false, evaluate and return

else.

mapping

(@map list callable) # run callable with each

key/index and value of list

(@mapnokey list callable) # run callable with

each value of list

lists

(@split list splitter) # split list with splitter

(@has_prefix list prefix) # return @true if list

has prefix prefix

(@trim_prefix list prefix) # remove prefix prefix

if list has prefix prefix

(@has_suffix list suffix) # return @true if list

has suffix suffix

(@trim_suffix list suffix) # remove suffix suffix

if list has suffix suffix

(@len list) # return length of list

folding

(@foldl callable list) # fold (left) list using

callable

(@foldr callable list) # fold (right) list using

callable

comparisons

(@lt a b) # a < b

(@le a b) # a <= b

(@gt a b) # a > b

(@ge a b) # a >= b

(@eq a b) # returns whether contents of (@inspect

a) and (@inspect b) are equal

(@or a b) # a ∨ b
(@and a b) # a ∧ b
(@not a) # ¬ a

arithmetic

(@concat a b) # concatenate string a with b

(@add a b) # a + b

(@sub a b) # a - b

(@mul a b) # a × b
(@div a b) # a ÷ b
(@rem a b) # a mod b

(@http_get url) # return body of HTTP GET request

sent with URL url

(@file_write path content) # write content to

file path

(@file_read path) # return content of file path

(@file_remove path) # remove file path

(@file_list path) # return list of files in

directory path

(@io_out content) # print content to stdout

(@io_outln content) # print content and ASCII

code 10 (decimal) to stdout

(@io_in delim) # return content read until delim

from stdin (returned doesn’t contain delim)

(@complex real imag) # make a new complex number

(@complex_to input) # convert input to a complex

number

(@int input) # convert input to an integer

(@uint input) # convert input to an unsigned

integer

(@float input) # convert input to a

floating-point number

(@string input) # convert input to a string

(@inspect input) # convert input to a string

representation

(@json_to input) # convert input to JSON format

(@json_from input) # convert input to native Coa

data

(@get_try map key fallback) # try to get value of

key key from map map. If it doesn’t exist, return

fallback

(@get map key) # return value of key key from map

map

(@set map key value) # set key key to value value

in map map

(@keys map) # get unordered keys of map

(@select list index) # return index-th value of

list

(@take_from list index) # return list from index

(@take_to list index) # return list to index

(@take list start end) # return list from start

to end

utils

(@label label content) # returns content; use to

label nodes

A.2 Sample codes
Some sample programs are shown to illustrate the use of the

Coa language.

7

2022-2-(7): Manuscript for presentation at IPSJ-SIGPRO, 28 7 2022.

A.2.1 FizzBuzz
Example code for a FizzBuzz question.

FizzBuzz

(@io_outln (@foldr @add (@for (@def i 0) (@lt i

101) (@mod i (@add i 1)) {

(@def line (@add

(@if (@eq (@rem i 3) 0) "Fizz" "")

(@if (@eq (@rem i 5) 0) "Buzz" "")))

(@add (@if (@eq line "") (@string i) line)

"\n")

})))

A.2.2 Internet Access
Example of accessing a Mediawiki instance to perform a

search.
MediaWiki Search

(@def search {

(@def name $0)

(@def base_url $1)

(@def url "https://$base_url/w/api.php?action=

query&list=search&srsearch=$name&format=json")

(@def data (@get (@get (@from_json (@http_get

url)) "query") "search"))

(@map data {

(@def key $0)

(@def value $1)

[(@get value "title") (@get value

"pageid")]

})

})

(@def search_and_save {

(@def term $0)

(@def base_url $1)

(@file_write "search_results_$term.md" (@add

"# Search Results for $term ($base_url)\n\n"

(@foldr @add (@map (search term base_url) {

(@def num (@add $0 1))

(@def title (@select $1 0))

(@def pageid (@select $1 1))

"$num. [$title](https://$base_url/?curid=

$pageid)\n"

}))))

})

({% # percent means "allow running this

concurrently"

(search_and_save "concurrency"

"en.wikipedia.org")

(search_and_save "good" "en.wiktionary.org")

})

A.2.3 Canadian Computer Contest 2012-s2
Example of Canadian Computer Contest 2012 S2 problem

solved in Coa. The problem is explained in [9].

compute a number format where arabic and roman

numbers are used together:

3M1D2C = 3 * 1000 + 1 * 500 + 2 * 100 = 3700

ccc12s2

(@def inp (@io_in ’\n’))

#(@def inp "2I3I2X9V1X")

(@def roman_numerals [m ’I’ 1 ’V’ 5 ’X’ 10 ’L’ 50

’C’ 100 ’D’ 500 ’M’ 1000])

(@def prev_r 0)

(@def prev_a 0)

(@def total 0)

(@for (@def i 0) (@lt i (@len inp)) (@mod i (@add

i 2)) {

(@def now_a (@int (@select inp i)))

(@def now_r (@get roman_numerals

(@select inp (@add i 1))))

(@def value (@mul now_a now_r))

(@if (@gt now_r prev_r) ({

(@mod total (@sub total

(@foldr @mul [2 prev_a prev_r])))

}))

(@mod prev_a now_a)

(@mod prev_r now_r)

(@mod total (@add total value))

})

(@io_outln (@string total))

A.2.4 Canadian Computer Contest 2021-s1
Example of Canadian Computer Contest 2022 S1 problem

solved in Coa. The problem is explained in [9].
ccc21s1

(@io_in ’\n’)

(@def heights (@mapnokey (@split (@io_in ’\n’) ’

’) @int))

(@def widths (@mapnokey (@split (@io_in ’\n’) ’

’) @int))

(@def area 0)

(@map widths {

(@def i $0)

(@def width $1)

(@mod area (@add area (@mul width (@add

(@select heights i) (@select heights (@add i

1))))))

})

(@mod area (@div area 2))

(@io_outln (@string area))

A.2.5 Mandelbrot Set
(@def get_pixel {

(@def x $0)

(@def y $1)

(@def c1 (@complex x y))

(@def c2 (@complex 0 0))

(@map (@range 1 900) {

8

2022-2-(7): Manuscript for presentation at IPSJ-SIGPRO, 28 7 2022.

(@def n $1)

(@if (@gt (@abs c2) 2) (@return_len n 2)

(@mod c2 (@add (@pow c2 2) c1)))

})

(@return 0)

})

(@def width (@int (@select @sys_args 2)))

(@def height (@int (@select @sys_args 3)))

(@io_outln "abc $width")

(@io_outln "def")

(@io_outln "ghi")

(@map (@range width) {%

(@def x $1)

(@map (@range height) {

(@def y $1)

(@def value (get_pixel

(@div (@sub x (@mul 0.75 width))

(@mul 0.25 width))

(@div (@sub y (@add (@mul 0.25

height) (@mul 0.25 width))) (@mul 0.25 width))

))

(@io_outln "$x $y $value")

})

})

9

